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DECOMPOSITIONS OF MULTIATTRIBUTE UTILITY FUNCTIONS

BASED ON CONVEX DEPENDENCE

Hiroyuki Tamura and Yutaka Nakamura'!
Department of Precision Engineering
Osaka University, Suita, Osaka 565, Japan

ABSTRACT

We describe a method of assessing von Neumann-Morgenstern utility func-
tions on a two—-attribute space and its extension to n-attribute spaces. First,
we introduce the concept of convex dependence between two attributes, where we
consider the change of shapes of conditional utility functions. Then, we esta-
blish theorems which show how to decompose a two-attribute utility function
using the concept of convex dependence. This concept covers a wide range of
situations involving trade-offs. The convex decomposition includes as special
cases Keeney's additive/multiplicative decompositions, Fishburn's bilateral
decomposition, and Bell's decomposition under the interpolation independence.
Moreover, the convex decomposition 1s an exact grid model which was axiomatized
by Fishburn and Farquhar. Finally, we extend the convex decomposition theorem

from two attributes to an arbitrary number of attributes.
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This paper deals with individual decision making where the decision
alternatives are characterized by multiple attributes. The problem is to pro-
vide conditions describing how a decision maker trades off conflicting attri-
butes in evaluating decision alternatives. These conditions then restrict the
form of a multiattribute utility function in a decomposition theorem. In many
situations, it is practically impossible to directly assess a multiattribute
utility function, so it is necessary to develop conditions that reduce the
dimensionality of the functions that are required in the decomposition.

Much of the research in utility theory deals with additive decompositions
[5, 16). Pollak [16), Keeney [11, 12, 13, 14], and others, however, develop a
“utility independence” condition that implies non~additive utility decomposi-
tions. Although these decompositions have been applied to wmany real-world
decision problems, there are situations, such as conflict resolution between
pollution and consumption [17], where the utility independence condition does
not hold. Fishburn [6] and Farquhar [3, 4] have investigated more general
independence conditions that imply various non-additive utility decomposi-~
tions. For example, Farquhar's fractional decompositions include nonseparable
attribute interactions.

In this paper, we introduce the concept of convex dependence as an exten-
sion of utility independence. In our methodology, normalized conditional
utility functions play an important role. Utility independence implies that
the normalized conditional utility functions do not depend on different condi-
tional levels, On the other hand, convex dependence implies that each nor-
malized conditional utility functions can be represented as a convex combina-
tion of some specified normalized conditional utility functions, Keeney [12]

described interpolation in motivating utility independence. If we find that
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the utility independence condition does not hold in the process of assessing

normalized conditional utility functions, we can repeat the procedure [17] to

test the convex dependence condition to derive the utility representations as
approximations. the concept of the convex dependence covers a wide range of 1
situations involving trade-offs. The convex decomposition includes as special

cases Keeney's [12, 13) multilinear and multiplicative decompositions,

Fishburn's [6] bilateral decomposition, and Bell's [1] decomposition under

interpolation independence, which is the same as first-order convex dependence

in this paper. Bell [2] has developed ways to reduce the number of constants

to be assessed and has provided a generalization of additive and multiplica-
tive forms in the multiattribute case. Moreover, the convex decomposition is
an exact grid model as defined by Fishburn [7]. Our approach gives an
approximatfon of utility functions but recently Fishburn and Farquhar (8]
derived a preference axiom which provides a general exact grid model, and
provided a procedure for selecting the normalized conditional utility

functions.

1. PRELIMINARIES

Let X = X; X ... x X, denote the consequence space which, for simplicity,
i8 a rectagular subset of a finite-dimensional Euclidean space. A specific
consequence x€X is represented by (x], se., Xy), where xy is a particular
level in the attribute set Xj. We consider Y x Z as two-attribute space,

vhere Y = xil X 400 X xtr, Z= x1r._l X see X xin and {il. cesey 1‘“} -

{l, coey n}. Throughout the paper, we assume that sppropriate conditions
are satisfied for the existence of von Neumann-Morgenstern utility function

u(y,z) on Y x Z [18]. Moreover, we assume that there exist distinct y*, yOey
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*
vhich satisfy u(y ,z) # u(yo,z) for all zeZ, Similarly, we assume that there

* *
exist distinct 2z ,zocz, which satisfy u(y,z ) #* u(y,zo) for all yeY.

DEFINITION 1. Given an arbitrary zeZ, a normmalised conditional utility

function v,(y) on Y 1s defined as

u(y,z) - u(yo.z)
* 0 .
u(y ,2) - u(y ,2z)

ve(y) =

*
From Definition 1 it is obvious that vz(yo) = 0 and vy(y ) = 1. Moreover,
*
if a decision maker prefers y to yo, then v,(y) represents his utility, and

*
if a decision maker prefers yo to y , then v,(y) represents his disutility.

To represent the decomposition forms and proofs simply, we need to
introduce some notation. First, we define three functions f(y,z), G(y,z) and

H(y,z) which will be used to represent the decompostion forms. We assume

u(yo,zo) £ 0 without loss of generality.
£(y,2z) = u(y,z) - u(y%,z) - u(y,z%), (1)
* 0 0 *
G(y,z) = u(y ,z)f(y,z) - u(y,z )f(y ,2), 2)
H(y,z) = u(y®,2")E(y,2) - u(y°,2)€(y,2). (3)

The two functions G(y,z) and H(y,z) are related to each other as follows.
u(yo,z*)c(y,z) - u(yo,z)c(y,z*) - “(y*.zo)ﬂ(y.z) - u(y,zo)H(y*.z). (4)
We define F(y,z) as
F(y,2) = u(y’,2")6(y,2) - u(y%,2)6(y,2"). (5

To represent the constants simply in our decomposition forms, three matrices

G" H" and F" are defined for yl, veey y“cY and zl. veoy z"cZ. Let the (4,3)




element of the matrix G" be denoted by (Gn)ij, which 1g defined as G(yi,zj),

2*. Siwmilarly, define (l!“)i.1 £ H(yj,zi), where y“ s z*, and define

where z"
(Fn)ij f(yj,zi), where yn - y* and z" = z*. Let G:j be the (n-1) x (n-1)

matrix obtained from G" by deleting the i-th row and the j—-th column, and let

“"det” denote the determinant on square matrices. Define

n n ~n i+ n
67| = det(c™, &7, = (-1) chijl, 1, = 1, aes, no
Let |u"|, ﬁ?j’ |F?| and F?j be defined similarly. Moreover, for n = 1, we define

~1 ~1 ~]
Gij Hij Fij 1. Ve define an n x n matrix Gn for distinct Yyr sees yn:Y,

and distinct ZgrZys sees Z EZ @8 (Gn)ij - sz(yi) - vzo(yi)'

2. CONVEX DEPENDENCE AND ITS PROPERTIES

In this section, we define the concept of convex dependence and discuss
some of its properties. In the following, let 8§14 be the Kronecker delta

function.

DEFINITION 2. Y is n-th order convex dependent on Z, denoted Y(CDy)Z, if there
exist distinet zg, 2}, +.., Zp€Z and real functions g}, «.s, g on Z with gi(zj)
= &y for 1e{l, ..., n} and je{0, 1, ..., n} such that the normalized

conditional utility function v,(y) can be written as

n n
v (y) = (1 - 121 8y(2)] v, (¥) + 121 g,(2) v, ) (6)

for all ycY and z€Z, vhere n {8 the smallest non-negative integer for which (6)

holds.




For n = 1, relation (6) implies "Y is interpolation independent of Z" in Bell's

(1, 2] terminology. When Y and Z are scalar attributes, a geometric illustration
of Definition 2 is in Figure l. Suppose three arbitrary normalized conditional
utility functions vzo(y), vzl(y), and vz(y) are assessed on Y. 1If Y(CDy)Z, all

the normalized conditional utility functions are identical as shown in Figure 1(a).
If Y(CD))Z, an arbitrary normalized conditional utility function v,(y) can be
obtained as a convex combination of vzo(y) and VZI(y) as shown in Figure 1(b).
Moreover, Figure 1(bd) shows that the preferentfial independence condition {9]

need not hold (Note that sz(y) is monotonic and vzl(y) is not.).

Figure 1 goes here

We now establish several properties of convex dependence. Llet Y(GUI)Z
denote Y 18 generalized utility independent of Z: see Fishburn and Keeney [10]

for a definition,

PROPERTY 1. Y(CDg)Z, if and only if Y(GUI)Z.

Proof. If Y(GUI)Z, the following equation holds
u(y,z) = a(z)u(y,zg) + B(2) &)

for some zpcZ. Setting y = yo and y = y* in (7) where u(yo.z) ] u(y*.z) for all

zeZ by the assumption in section 1, we obtain

——

u(y%,2) = a(e)u(y%,zq) + B(2), (8a)
u(y*,z) = a(z)u(y*,zq) + B(z). (8b)
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Therefore,

uly,2) = u(y0,2) _ a(2)luly,zg) = u(y%z0)] _ uly,20) - u(s%z0)

u(y*,z) - u(yo.z) a(z)[u(y*,zo) - n(yo,zo)] u(y*,zo) - u(yo,zo).

From the Definition 1, (9) implies that vg(y) = vzo(y) which shows that Y(CDgp)Z.

If Y(CDy)Z, (9) holds. Rearranging (9), we obtain

u(ysz) - u(y?l;) u(y,z0) + u(y0,z)u(y*,zg) - u(y%,z¢9)u(y*,2z)
u(y*.zo) - u(yo.zo) U(y*.zo) - u(yo.zo)

u(y,z) = (10)

which shows that Y(cUI)Z. I8

This property shows that the convex dependence is a natural extension of general-

ized utility independence except for null zones.

PROPERTY 2. If Y(CD,)Z, then there exist distinct y}, ..., yp¢tY, and distinct

20sZ], sees 2n€Z which satisfy rank G, = n.

Proof. On the contrary, suppose rank G, # n for all distinct yj, «ce, Yp€Y
and z(,2], seey Zp€Zs Then there exist real numbers hy (1 = 1, ..., n) such that

for all yeY, we have

— s e e

n-1
Ve () = Vg () = 121 hylv, (9) = v, ()]

which implies Y(CDp-1)2. B

kg ¥ 3004
-t ¢..f}s.a

Using Property 2, we can assess the order of convex dependence [17].

For n =1, 2, ... sequentially we test the rank condition of Gp for arbitrary

distinct yj, eees Yn€¥. Then 1f rauk G, = n and rank Gpy) = n for arbitrary

distinct ¥y, eees Yn+1€Y, We can conclude Y(CDy)Z.
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It is obvious that relation between G, and G" 1s as follows
rank G, = rank c"

=1

1 n 0.1 n *
for distinct y', ¢ss, ¥y €Y and distinet z ,2", ..., 2 » 2 €2, because G(y,z)

- u(y*,zo)(u(y*,z) - u(yo,z)][vz(Y) - vzo(y)] from (1) and (2). Thus we immedi-

J
ately get the following property. j!

PROPERTY 3. If Y(CD,)Z, then there exist distinct y!, ..., y"eY and distinct

zl, coey zn_lez which satisfy rank G" = n.

Obviously the same property of rank condition for H" holds. Property 3 guarantees
that the following property holds, which shows the relation of the order of

convex dependence between two attributes.

PROPERTY 4., For n =0, 1, ..., 1f Y(CD,)Z, then Z is at most (n + 1)-th order

convex dependent on Y.

Proof. See appendix.

A few aspects of these Properties deserve brief comment. If Y is utility
independent of Z which is denoted Y(UI)Z, then Y is obviously convex dependent on
Z; the converse is not true. The concept of convex dependence asserts that
when Y 1s utility independent of Z, Z wmust be utility independent or first-order
convex dependent on Y. Moreover, 1f Y is n-th order convex dependent on Z, then Z
satisfies one of the three properties, Z(CDp-1)Y, Z(CDy)Y, or Z(CDp4])Y, because

if Z(CDp)Y for m < n - 1, then Y(CDp4))Z at most and m + 1 < n.
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PROPERTY S, If rank G" = n for distinct yl, ..., y”eY and distinct z!, ...,

zn-lez, then rank F" = n.

Proof. By using (2), we obtain the fcllowing relation between G" and F".

n* n*
6% = (w2 ] w1 OF sote) - w2010 ),
1=1 4=1

*
where summation {1 =]l ton means 1 =1, 2, ,.., n-1, *,

On the contrary, 1f rank F* # n for distinct yl, ooy yn-leY and zl, ceesy zn-lez,
then, -
|F"| = 0 and ) F“if(y“,zj) =0 fori=1, 2, esue, n
3= J

- *
because even 1f we transform one of yl, y2, esey yn 1 and y into yn in Fn,

rank F* # n by the assumption. [

3. CONVEX DECOMPOSITION THEOREMS ON TWO-ATTRIBUTE SPACE

This section uces convex dependence to establish two decomposition theorems
and a corollary for two-attribute utility functions. We further discuss the

relation of these results with the previous researches.

?1 { THEOREM 1. For n = 1, 2, ..., Y(CD,)Z, if and only if
. 0 0 * oy o0 1
: u(y,z) = uly s2) + uly,z ) + v(E(y ,2) + —L- ] ] Cy16(y,2 ¥e(yd,2), an
F [G7] 1=1 j=1
0
where v(y) = &i%, Cy = '———*—I'T.
u(y ,z) “(y »Z )

Proof. See appendix.

.E

L
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THEOREM 2. For n =1, 2, ..., Y(CD,)Z and Z(CD,)Y, 1f and only if

* %
n n
1

an i 3
[F°| 121 jzl F15 10,2 E07,2)

u(y,z) = u(yo.z) + u(y.zo) +

n* ot nosn i h ]
tec 121 4 Gl 1T 6(ys2 MGy, 2), (12)
coc n* n*
where ¢ = E“HLT [£¢5,2") - Ill-‘“l RS AR D LR DY
1 1
and ¢ ® —t—r ¢ = —_— .,
w2 F w2

Proof. See appendix,

We have obtained two main decomposition theorems which can represent a wide
range of utility functions. Moreover, when the utility on the arbitrary point
(y?,2") has a particular value, that is, ¢ = 0 in (12), we can obtain one more
decomposition of utility functions which does not depend on the point (y%,z%).
This decomposition still satisfies Y(CD,)Z and Z(CD,)Y, so we will call this new
property reduced n-th order eonvex dependence and denote it by Y(RCD,)Z. It is

obvious that Z(RCD,)Y when Y(RCD,)Z.

COROLLARY 1. For n =1, 2, ..., Y(RCD,)Z, 1f and only if

n* no*

17 3 sy.2hed, 0. (13)

0 0
u(y,z) = u(y ,z) + u(y,z ) +
|F?| 1=1 3=1

We note that when n = 1, (13) reduces to Fishburn's [6]) bilateral decomposition,

[ *
u(y,2) = u(y0,2) + u(y,z0) + £z 20V ,2) (14)
£(y*, 2"




In Figure 2, we gshow on two scalar attributes the difference between the

conditional utility functions necessary to construct the previous decomposition
models and our decomposition models. By assessing utilities on the heavy shaded
lines and points, we can completely specify the utility function in the cases
indicated in Figure 2. As seen from Figure 2, an advantage of the convex

decomposition is that only conditional utility functions with one varying

attribute need be assessed even for high-order convex dependent cases.

Figure 2 goes here

4., CONVEX DECOMPOSITION THEOREM ON N-ATTRIBUTE SPACE

There are many ways to extend the two-attribute convex decomposition
theorems in Section 3 to n-attribute decompositions. In this paper, we extend
Theorem 1 to n attributes in a way which might be useful in the practical
situations discussed later.

We partition X into X1 and xi, where XI HS xl X 400 X xi_l x xi+l X qo0 X xn.
When we consider Y = xi and Z = XI in Theorem |, all notation and definitions
in the previous section are suffixed with 1. The representation and its proof
of n-attribute convex decomposition theorem requires some additional terminology
and notation as shown in Farquhar [3). First, we define the following function

for 1 = }, eeey N,

e

e k
Sty ® L Categ 0% e X1 (15)

~m ] k
where ci(j.k) is (3,k)-cofactor of G1 and xiexi, x3 exi. The delta operator
A is defined as follows. Suppose X = XI x xi for some 1 { r { n and
T r

1, {1, «¢ey n}. Let ye xi, and a = {a,: 1eI }, ae{l, .00, m, #, blank}.

i e A o . .
i - I PPN




et o m

- kb

DA 8 bl > . T

13
Then delta operator 4 is defined as

{(-l)b u(x?l, soey x:T, y): aj =1 1if jeJ,

u(xga. y) = )
T JC1, 1 r

aj = 0 and o5 = 0 1f § § J}, (16)

r
where b = r + | aj.
i=1

We shall often omit attributes that are at the level xo, when it will not

be confusing. For instance, u(xl) = u(xl, xio). The utility function is always
scaled so that u(x?, coey xg) = 0. From the definition of the delta operator

a da
and (1), fj(xjj, X5 y) for all jeIr, J-Ir-{j} are equal each other. Using the

Aa
relation of fi(x:i, x;) s fi(x1 , xi) for 1 =1, ..., n, we can get the following
notation

a _ Aa
fIr(y) = fi(xlr’ y) for all el . a17)

The coefficient function A y(¥) for I_ C {1, esey n}, 8 = {By: 11} and

(1,8

Bse{l, oee, *} 15 defined as

- b a8y g
A H] -1 I £ :
(I,,B)(y) g é Ir{( ) o ulx,”) Ir()') a

=8 ,B, =%and ¢, =0

j Yy J

if jeJ, ag = * and cqy = 1 4f J § J}, (18)

r
wvhere b=r+ Jc, andy e Xz .
j-l j Ir

The coefficient function has the relation with (2) as follows.




PROPERTY 6.

By

(1) A (xi » xI) for i = l' eeey No

(1,8 D = &

B

* 4 B4 A%
(11) A(Ir.B)(y) = u(xi) A(J’s)(x1 , YY) - u(x1 ) A(J,B)(xi 2

for icI, and J = I, - {i}.

88 oy
- -1)b : = -
) 805 g = ) J{( DY G, (x, s y) J:Iru(xj ): oy = By, By = * and

ay = 0 if JeK, uj-*andaj-lifj*l(],

r
where b = r + 121 8, J=1_+ {1}, 1 § 1 and yex;.

Proof. (i), (i1), and (iii) are easily obtained from (2) and (18). [ |

THEOREM 3. Suppose that for ieN = {l, evey n}, my are nonnegative integers.

For 1 =1, +s¢o, n, xi(CDmi)XI if and only if

(X, ses, x) = J {e; T vi(x)}
! " 1EéN Tger tE

0y my
+ 2 { nd 2 G, .(x,)]|A + V. (x )]}’ (19)
ICN 1iel 1 4=1 1,371 [ (1,8) 172

A%
where Vi(Xj) =Jc:):N-I{A(I’8)(xJ ) ng vi(xi)],
a*
CI ] u(xl ))

di E—'“I!'—*'-for i= l. seey N,
lGi Iu(xi)

B = {By: 1€1} and B4e{l, ..., my, +].

Proof. See appendix.
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Decomposition form in Theorem 3 gives & wide range of utility functions

on n-attribute space because it 18 possible to allow for the various orders

of convex dependence among attributes. The order of convex dependence is the
number of normalized conditional utility functions which must be evaluated to
construct a multiattribute utility function. Therefore, Theorem 3 provides the
general decomposition form which has my conditional utility functions on each
Xjy to be evaluated. Nahas [15] discussed the order of conditional utility
function on each Xj when utility independence holds among attributes. In this
paper, we show the relation among orders of convex dependence on each Xy, which
is one extension of Nahas' discussion. As Property 4 holds with respect to the
order of convex dependence between attributes, the following property holds

with respect to the order of convex dependence in Theorem 3.

PROPERTY 7. When xi(CDmi)xi for i =1, ..., n, 1if m,, ees, m are arbitrary

orders of convex dependence, the order mj} must satisfy the following two

inequalities.

n
1) 0 (mg+2)2m+1
i=2

(11) m) + 2 ?_mx {82. eeey an}'

where ag = (my +1) / n
It (mj+2), 1-2’ eeoy N

i=2

j#

Proof: (1) When m3, ..., m, are arbitrarily given, we can obtain the

upperbound of m; by the following term in (19).

n o
1 g, T o™ (x,)8

(20)
gm1 1ge LIH (N, 8)
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The upperbound of m) is determined by the number of normalized conditional
utility function on X) included in (20). Then, it is sufficient to take into

account the following term in (20).

m]
d, jz ’j(xl)A(N.B) (21)
By Property 6 it is obvious that (21) is constructed by the linear

combination of the following terms.

m
a, 1 6 (x)6 (xj. 2=, (22)
i 3=1 oj 2 n

where 815{0, 1, ceny mi, *}, i= 2, eoey Mo

Substituting (15) into (22), we have

dl 321 G (xl,x ) z l(k j) Gl(xl, xz, cesey xn ). (23)

8 8
Setting ij - (xzz, eeey X n) in (23), we have
n

1

B 8
* Gl(xl, 122, seey xnn)C (24)
u(xl)

8
Then, the decomposition (19) includes Gl(xl, xzz, esey x:n), Bie{O, 1, eoey u,, *},

n
1i=1, oo, n, that 1s, N (my + 2) normalized conditional utility functions
i=2

at most.

(11) Vhen xi(cnni)xi. i=1, «.., n, the orders By, ooy m muSL satisfy the

following inequalities by (1).

n(nj+2)z-1+l, 1.1. seey N
i=1
h A
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Then for m) we have

mi + 2 2“)‘ {32. sosy an},
where a4 = (g + 1)/ n

H(mj+2), 1-2, seey N -
i=2
h A3
In some decision problems, utility independence may not hold in one or

more attributes. In such cases the convex decomposition theorem may give a

representation of the utility function. We illustrate how the convex

decomposition theorem decomposes the utility function when n = 3,
When m; = my = m3 = 0 in (19), we have obviously

I v, (x,).

ulx,, x,, x.) = } c
P78 1 &,2,3) T 11

This decomposition is a multilinear utility function [11].
Vhen my and m3 are arbitrary orders of convex dependence, we obtain the

following inequalities from Property 7.

(mg + 2)(m3 + 2) 2 m; + 1, (25)
my +1 m3 +1
m + 2 > max {r3+2,‘;+2} (26)

When m2 = m3 = 0 in (25), that is, X3(CDy)X)X3 and X3(CDp)X)X2, X; is at most
third-order convex dependent on X7X3. In this case the decomposition fora in

Theorem 3 1is reduced to
ulx,,X,,%x,) = | c, 0 v, (x,)
723 e 1,2,3) e L

T m 1.+ 0
+dy LGP0 xpaxpuxgvytxy)

i 0 _» 1 _* ¢
+ Gl(xl’x2'x3)v3(x3) + Gl(xl.xz,xa) va(xs)]. (27)
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Therefore, we can construct (27) by evaluating one conditional utility
function on X7 and X3, m) conditional utility functions on X}, where mj = 1,

2, or 3, and constants. When m) = 3, that is, X)(CD3)X2X3, (27) is reduced to

A* 0O
u(xl.xz,x3) = clvl(xl) + u(xl.xz.xa)vz(xz)

0 A+ A* A*

+ u(xl,xz.x3 )v3(x3) + u(xl,xz,x3 )vz(xz)v3(x3). (28)
This decomposition form 1s the same as the one which Keeney showed in [14] and
Nahas discussed in [15] when Xp(UI)X;X3 and X3(UI)X;X;. Keeney said nothing
about what property holds between X; and X3X3 in this case. Convex dependence
asgserts that (28) holds if and only 1f X;(CD3)X7X3 as shown above. Moreover,
from Property 7 (ii) convex dependence allows for X;(CD2)XpX3 or X;(CD))XyX3
which are stronger conditions than X;(CD3)X3X3. In these cases, we could
obtain decomposition forms easily as shown in (27) where m) = 1 and 2 are

corresponding to X;(CDj)XyX3 and X;(CDy)X3X3, respectively.

5. SUMMARY

The concept of convex dependence is introduced for decomposing
multiattribute utility functions. Convex dependence is based on normalized
conditional utility functions. Since the order of convex dependence can be an
arbitrary finite number, many different forms can be produced from the convex
decomposition theorems. We have shown that the convex decompositions include
the additive, multiplicative, multilinear and bilateral decompositions as
special cases. A major advantage of the convex decompositions is that only
single-attribute utility functions are used in the utility representations

even for high-order convex dependent cases. Therefore, it is relatively easy




19

to assess the utility functions. Moreover, in the sultiattribute case the
orders of convex dependence among the attributes have much freedom even if the
restrictions in Property 7 are taken into account. So even in the practical
situations where utility independence, which is the 0O-th order convex depen-
dence, holds for all but one or two the attributes, the convex decompositions
produce an appropriate representation.

Our approach is an approximation method based upon the exact grid model
defined by Fishburn [7]. We note that Fishburn and Farquhar [8] recently
i established an ixiomatic approach for a general exact grid model and provided

é a procedure for selecting a basis of normalized conditional utility functions.
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APPENDIX

To represent simply an arbitrary linear combination of normalized

conditional utility functions, we define the following notation

m
C[Vzl(Y). seey Vzn()')] = 121 61 Vzi(Y)l

m
where ] 65 = 1.
i=1

By using this notation, the following equations hold. w

f(y,z) = f(y*,z)C[vzo(y), vz(y)], (29a)

- f(y,z*)c[vyo(z). vy(z)], (29b)
G(y,z) = G(y,z*)C[vyo(z), v (2), vy*(z)], (29¢)
R(y,2z) = B(y*,2)C[v,0(y), v,(¥), v,a(]. (29d)

Proof of Property 4: When n = 0, if Y(CDO)Z, then vz(y) - vzo(y).

Using (1), we have

f(y,z) = vzo(y)f(y*.z). (30)

Substituting (29b) into (30), we have

C[vy(z), vyo(z)] - C[vy*(z), vyo(z)].
This concludes Z(CDj)Y at most.

*

When n > 1, 1f Y(CDy)2, then for distinct zo, zl, eeny 201, g%e2

® *

n n
v () = [1- 1 g(@]voly) + 1 g2)v,a(y)
1=] 1=1
L

n
- 121 [v1(9) = v,0(3) g, (=) + v,0(9). (31
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By Property 2 we can select distinct yl, essy YREY and zl, ey 2" lez which
make G, a nonsingular matrix. Then, substituting these yl, eeay YPEY 1nto
(31), we have the following matrix equation,

Gph g =V, (32)
where g and v are column vectors and these i-th elements are g;(z) and v,(yl) -

v (yi). respectively.
20

Using G(y,z), (32) is transformed into

Gg=u, (33)

where u(y*z) # u(y0,z) for all zeZ from the previous assumption, and (E)ij =
6(yl,23)/[u(y*,z1) - u(y0,23)], where 2" = 2*, and u 1s a column vector and

its i~th element is G(yi,z)/[u(y*.z) - u(yo,z)].

Solving (33) for gj(z) (4 = 1, ..., n) and substituting these g4(z) into

(31), we obtain
o*

G(y,2) -—L 2 G(y.z ) 2 jiG(yj.z). (34)
|6"| 1=1 i=1

vhere G7 1is nonsingular by Property 3.
By (29c) we have
6(y,2")C[vyo(2),s v (2), voa(2)]

*

e . 35
IG“I 121 &y, 2h jzl {S(y7, = )C[vyo(z), vyj(z), vy*(’)] (35)

Summing up all the coefficients of C[V&o(l), vyj(z), vy*(z)] for § =1, 2, ees, M

in the right hand side of (35) yields

|c“| 121 c(y,zt) I Gjic(yJ ") = G(y,2"),
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which implies

vy(z) - C[vyo(z), vyl(z), ceey vyn(z), vy*(z)].

This concludes Z(CDp41)Y at most.

Proof of Theorem 1: Suppose Y(CD,)Z, and (34) holds. Substituting (2) into

the left hand side of (34) and solving it with respect to u(y,z), then we have (11).
Conversely, suppose that (11) holds. By definition (2), it is obvious

that Y(CDy)z. I

Proof of Theorem 2: Suppose Y(CD,)Z and Z(CD,)Y. Using Theorem 1, we

get two equations,

n
u(y,z) = u(yo,z) + u(y,zo) + v(y)f(y*,z) + cy Z G;(y)G(yi,z), (36a)

1=1
and
n
u(y,z) = u(y0,2) + u(y,20) + v(2)f(y,2z*) + c, 1 H:(z)ﬂ(y.zi). (36b)

i=1
4 where « «

| S = —L ] & o0, and B £ —L T 8 ao50.
* |6 k=1 [5"| k=1

Substituting (36b) into £(y%,z) for ae{l, 2, ..., n, *}, we have

£(y%2) = v(2)£(y%2") + ¢ (y%2), (37)

n
where we use v(zo) = 0, H(y,zo) = 0 and H(y,z) = 2 H:(z)ﬂ(y,zi).
i=]

Substituting (36b) into G(y“,z), we have

n
6(y%2) = v(2)6(y%2") + ¢, ] RI(D)F(y%2h). (38)
i=1

Substituting (37) and (38) into (36a), and using (2) and (3), we have

u(y,z) = u(yo.z) + u(y.zo) + v(y)f(y*.z) + V(z)f(y.z*)

n n
- v(y)v(z)f(y*.z*) +cc, D) G:(y)nn(z)F(yi.zJ). (39) ;
V2 fa1 ju1 3
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We can assume that F® is a nonsingular matrix because Property 5 holds.

Considering next equation and transforming it, we obtain

VPG 2) + v(DE(z) = viyv()E(y 2

-1 n* n* .
- 7 ) vonsoteheet e
1=] j=1
+ w2, 2N e, - v, 26", 2h ). (40)

By definition (2) and (3), the following relation holds.

vt D,z + vy, ey, 2t - Vv E(y 2,2

- £(,2h)e(7,2) = e e, 60,2, 2) (1)

Substituting (40) and (41) into (39), we obtain

* n* . .
£(y,2) = —¢ I 7, lE0u2hee) e - eye6trizhined )]
|F7| 1=1 j=1
n n
v, 1) SloEl@rGhh, (420)
1=1 3=1
n* Tzl ~n 1 j
f(y,z) = F  f(y,z")f(yl,2) +
[F?| 1=1 g=1 1
* * an
non 1 2% g ko r, T4 1y.0.3
cec, ) ;I LRy ,2) - lety,z )u(y’,2). (42b)
Y2 <1 =1 |6™") k=1 r=1 K1 |F°|

In (42a), setting y = yP, z = 29 for p, qe{l, «co n}, and solving it with

respect to cyczF(yP,zq), and then substituting it into the following

n
CuC n n Kk Fil
' n :l kz 2 Elkliﬁ:JF(y ’zl') = | n CyC2
GH =] r=] F
(el iy ot ot
- 'ML “Fn|f(ynozn) - 2 2 F f(yntzq)f(ypgzn)]o (43)
T p=1 q=1 9P
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where we use the following relations
n* ot i n n*
I 1 Fof(y K 2he(yP 2%y = [F"] 5 f(y 29,
p=l q=1 9 q=1
T k n
I &6(y,z%) = 8, IG |, and I i H(yP,z") = &, |u"],
k-l ki r=] j j

where Gij denotes the Kronecker's delta.

Substituting (43) into (42b), then we have (12). Therefore, sufficient

condition is proved.

Conversely, suppose that (12) holds, then we assume G“, Hn, and F" are

nonsingular matrices. Substituting (3) and (29a) into (12), we have

*
£(y,z )C[vyo(z). vy(z)]

7,02t exclvio@), vig ()]
IF | 1=1 3-1 y

v j(2) = v_o(2)
+c z 2 i, 6(y,2h) A A . (44)
1=1 j=1 Sty u(y%, 25 [urt e - 5ivi29)

Summing up the coefficients of C[vyo(z). vyj(z)], vyJ(z) for § =0, 1, 2, «ee,

*
n, * and vyo(z) of the right hand side of (44), we have f£(y,z ). Then, we

conclude Z(CD,)Y, and the same procedure for Y concludes Y(CD,)z. I

Proof of Theorem 3: We can prove this theorem in the same way as Farquhar

{3]. 1f xi(CDmi)XI for i =1, ..., n, then by Theorem 1, (15) and (18) the

following equation holds.

u(xl, seey xn) = u(xi) + u(xl, cosy xi_l. x1+l, ceey xn)

+ vi(xl)fi(xl’ TIPR FNT xf*, Xop1s *oos xn)

oo™
* jz 1,30, B, yFpr oer Xypr Eygpe ceer X)) (49
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If 1 = 1 {n (45), then we have

A%
u(xl. veny xn) = u(xl) + u(xz, eeey xn) + vl(xl)fl(xl » Xgy eeey xn)

1 m
+ dl jgl cl,j(xl)A(l,Bl)(XZ’ ssay xn)o (46)

If £ = 2 in (45), then we have

Ak
u(xl, oy xn) = u(xz) + u(xl, Xqs sesy xn) + vz(xz)fz(xl, Xgs Xgs seey xn)

1 2 m
+ d2 jzl Gz,j(XZ)A(Z,BZ)(xl' Xgs sees xn). 47)

We consider to substitute (46) into (47). First, we substitute (46) into

the following

L f.(x., fo X,, eeey X ) = u(x., fo X., ese, X ) = u(x,)
271 72 73 n 1 2 3 n 2

= fz(x?, ng Xqs eses xn) + vl(xl)f;(x3. coes xn)

T m Ac
+4d jgr °1.5“1’°(1.sl)(‘z' Xgs sees X)), (48)

where ce{0, 1, «.., m,, *}, K= {1,2}, a = {al, 32}, a, =*, a, = c and we use

the relation (17).

Secondly, we substitute (48) into the following

A(z'ez)(xl, x3, seey xn) 11

0 AR
- A(Z,Bz)(xl, 13’ seey xn) + vl(xl)A(Z,Bz)(xl’ X3, sesy xn)

& Bl m
E. + dl jzl cl.j(xl)A(K,B)(xa' coey Xn),

é vhere K = {1,2}, and 8 = {8;, 85}.

-
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From (46) we obtain the following
u(xl. Xy eees xn) - u(xl) + u(x3, eesy xn) + vl(xl)fl(xf: xg. Xqs ooy xn)
o= 0
+ dl jzl cl,j(xl)A(l.Bl)(XZ’ Xgs eoes xn). (50)
Substituting (48), (49), and (50) into (47), we have

u(xl, evey xn) - u(xl) + n(xz) + u(x3, cees xn)

T

A* O
+ Vl(xl)fl(xl, xz, x3, ceey xn)

P
.

*
+ vz(xz)fz(x?, x:, Xqy eses xn)

3 a
§ + Vl(xl)vz(xz)fK(X3, ey xn)

+d lfl "
1 1°1

1 0 A%
j- ’j(xl) {A(I,BI)(XZ’ x3, ooy xn) + Vz(xz)A(l’Bl)(xz ’ x3, ooy xn)}

+d

. b

m2 0 A%
j-l Gz.J(xz) {A(Z,Bz)(xl’ x3, ooy xn) + vl(xl)A(z’Bz)(xl Y x3, seey xn)}
‘ . m m3 m) m
\ + dldz jzl kzl Gl’j(xl)cz.k(xz)A(K’B)(x3' seey xn),

| where K = {1,2}, a = {al, ‘2}’ a, =*, and a, = %,

This procedure is repeated for steps i = 1, ..., n. Hence, we have (19) by

A

‘2“4 , using Property 6 and the following relation
i
! I
r

£2 = ulx
Ir

) and u(xi) - u(x:*) vi(xi) for 1 =), 4e0, n,

where Ir - {11, esey 11_} cC N, as= {al, seey .t} and ‘1 = % for all 1.

Conversely, if (19) holds, it 18 evidenly that Xi(CD. )x; for 1 = 1, «oe, 0
b §
by (29) and the property of convex combination. B




1.

2.

5.

6.

9.

10,

11.

12,

13.

14.

R e e ————

28

REFERENCES

Bell, D.E. (1979). Consistent assessment procedure using conditional
utility functions. Operations Research, 27, 1054-1066.

Bell, D.E. (1979). Multiattribute utility functions: Decompositions
using interpolation. Management Science, 25, 744-753.

Farquhar, P.H. (1975). A fractional hypercube decomposition theorem for
sultiattribute utility functions. operations Research, 23, 941-967.

Farquhar, P.H. (1976). Pyramid and semicube decompositions of multi-
attribute utility functions. Operatione Research, 24, 256-271.

Fishburn, P.C. (1965), Independence in utility theory with whole product
sets. Operations Research, 13, 28-45.

Fishburn, P.C. (1974). von Neumann-Morgenstern utility functions on two
attributes. Operationg Research, 22, 35-45.

Fishburn, P.C. (1977). Approximations of two—attribute utility functions.
Mathematics of Operatione Research, 2, 30-44.

Fishburn, P.C. and P.H. Farquhar (1981). Finite-degree utility independ-
ence. Working Paper 81-3, Graduate School of Administration, University
of California, Davis, California. To appear in Mathematice of Operations
Regearch.

Fishburn, P.C. and R.L. Keeney (1974). Seven independence concepts and
continuous multiattribute utility functions. Journal of Mathematiecal
Psychology, 11, 294-327.

Fishburn, P.C. and R.L. Keeney (1975). Generalized utility independence
and some implications. Operations Research, 23, 928-940.

Keeney, R.L. (1971). Utility independence and preferences for multi-
attributed consequences. Operations Research, 19, 875-893.

Keeney, R.L. (1972). Utility functions for multiattributed consequences.
Management Science, 18, 276-287,

Keeney, R.L. (1974). Multiplicative utility functions. Operations
Research, 22, 22-34.

Keeney, R.L. and B, Raiffa (1976). Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. John Wiley and Sons, New York.

Nahas, K.H. (1977). Preference modeling of utility surfaces.
Unpudlished doctoral dissertation, Department of Engineering-Economic
Systems, Stanford University, Stanford, California.




16.

17.

18.

Pollak, R.A. (1967). Additive von Neumann~-Morgenstern utility functfons.
Eeonometrica, 35, 485-494.

Tamura, H. and Y. Nakamura (1978), Constructing a two~attribute utility
function for pollution and consumption based on &8 new concept of convex
dependence. In H., Myoken (Ed.), Information, Decigion and Control in
Dynamic Socio-Economics, pp. 381-412. Bunshindo, Tokyo, Japan.,

Von Neumann, J. and O, Morgenstern (1944), Theory of Games and Economic
Behavior. 2nd Ed., Princeton University Press, Princeton, New Jersey,
1947; 3rd Ed., John Wiley and Sons, New York, 1953.




vzo(y)=vz(y)fvzl(y)
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(v) Y(cnl)z

vz(y) = (l-g(z))vz (y) + g(z)vz (y) for all ze2
f 0 1

Figure 1. The relations among normalized conditional utility functions when
the convex dependence holds.
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Figure 2. Assigning utilities for heavy shaded consequences completely
specifies the utility function in the cases indicated.
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